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This article presents a simple model which explains anomaly discovery and repair
phenomena when applied to variations in work load and multiple-stage testing. The
theory shows that estimates of anomaly levels and team capability can be predicted after
a significant fraction of the anomalies has been found, and indicates procedures for
applying these figures to schedule estimation and work-load assignment. Of particular
interest is the demonstration that end-to-end testing of programs in other than the
operational environment is not generally cost effective.

I. Introduction

Almost every software project enters a phase where it is
“90 percent complete,” in which it seemingly remains for a
very disproportionate length of time before true completion.
Much of this time, as it turns out, is spent discovering and
repairing anomalies in the program, operations manuals, or
program requirements. The number and kinds of anomalies in
a software package are matters of fact and not matters of
probability; however, since only a relatively small portion of a
large program’s documentation and response can ever be veri-
fied in a practical sense, the process of discovering anomalies
appears to be a random process.

Repairing an anomaly requires study, software alteration,
and then reverification. Because the differing kinds of
anomalies exhibit a range of difficulty, and because human
interaction is always required, the repair rate also appears to
be a random quantity.

This article evaluates the average time required to discover
and repair anomalies which appear randomly in testing. “Test-
ing” here refers to the end-to-end tests performed after the
programming is complete. Anomalies are assumed few enough
that their discovery is not so rapid as to swamp out the efforts
of the test team. The work bases its evaluations on a Markov
model (Ref. 1) with time-independent parameters. The
assumptions made about the discovery and repair process are:
(1) the probability that a test will find a new anomaly is
proportional to the number of undiscovered anomalies yet in
the system, and (2) the probability that an anomaly remains
unfixed decreases exponentially in the time since its discovery.
Both of these assumptions are intuitively based, but appear to
be supported well by empirical data (Refs. 2, 3, and 4).

The goal of this evaluation is not so much to model or
characterize precisely the way anomalies are detected and
removed, but to provide a schedule prediction tool and status
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monitor for software project managers. Although statistical,
the method does allow extrapolations to be made early in
testing so that resource reallocations, if necessary, can be made
to align completion dates with committed capabilities.

The method accommodates variations in work loads and
multistage testing in different sub-operational environments.

Il. Discovery of Anomalies

Let us suppose that a system possesses 4 (number unknown
a priori) anomalies, and that a constant effort is being applied
toward the discovery of these. Having found » of these (define
this as state £, ), let us further suppose that the probability of
finding the next (moving to state £, ) is proportional to the
number yet remaining; that is, we shall assume that a transi-
tion from state £, to £, ., in the time interval (¢, £ + Ar) will
take place with probability A, At=(4 - n) aAt for some
appropriate constant a. Feller (Ref. 1) gives the general form
for the state probabilities P, () as a function of time:

P (1) = -XP(0)
, ()
Pn (t) = —)\nPn([)+ )\n‘lpnol(t)
The latter equation serves for n = 1,---, 4. The general

solution may be found by straightforward application of the
generating-function method, in which

A
P S Y P (O)x" )
n=0

yields a partial differential equation

N DO
3, - alx l)(A(I) xax) (3)
whose solution (Ref. 4) is
Ay -
PL) = (1) e A - 1y 4)

Having this expression, we may proceed to compute the
mean time to discovery of the nth anomaly: The probability
(density) that the nth anomaly is discovered at time T, is the
probability that n - 1 anomalies had been found by T, - A¢,

times the probability, N, Az, that the transition E,_,~E,
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occurs during the last At interval. As Af~0, we reach the
limiting equation

p, (1) =X\, _ P _ (T (%)

The generalized moments of this density are then

avg (7)) :f T"p (T)ar
0

_ [ m! A
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= n-1 (_l)k
2 ( k ) (A *T-n+1ymil ©

The first two of these moments can be evaluated directly to
produce mean and variance values
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The Y-function is the “digamma” function, ['/I", in Ref. 5.
The mean-to-deviation ratio is thus

8

The behavior of this ratio is shown in Fig. 1, and the normal-
ized mean time to reach the nth anomaly is displayed in Fig. 2.
The normalization in Fig. 2 is set to make the initial rates of
anomaly discovery equal.

The first figure shows that the relative time variance to
reach the nth anomaly decreases approximately as 1/rn, except



at values where n becomes appreciable to A, whereupon it
rises, ultimately reaching the value

var (T,) 1.645 o)
T (0.57721 + In 4)> '

The minimum relative variance appears to occur at an n of
about 80 to 85 percent of the total anomalies, and its value is
about 1.5/4.

This behavior infers that the discovery of anomalies up to
about 85 percent of the total proceeds quite normally; the
relative variance decreases inversely proportionally to the num-
ber found, as would be expected of a random process. The
remaining 15 percent of the anomalies, however, not only
require longer and longer times each to discover, but the
variations in discovery times begin to grow disproportionately,
as well.

The ratio T, /T, represents the average relative completion
status during anomaly discovery. Note in the graph of this
ratio (Fig. 3), for example, that if there are 100 anomalies,
then when 90 percent of them have been found, only about 44
percent of the total required time has elapsed. Therefore, if
one could estimate the number of total anomalies by some
figure A, he could then also estimate the time which would
probably be needed to complete testing.

An approximate value for T is given by

- 2 _
oﬁ:n ~ Inx+ x-1 + X 1
2(4+1) 12(4+1)?
x4 -1 x7-1

—_ _._.____+ ——
1204+ 1)* 2524 +1)°

ng>

A+t
A+1-n

(10)
A. Estimating the Unknown Parameters « and A

Upon differencing the average times to discover successive
anomalies, one finds

|
e

R
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(1

n+1 T

The expected time to uncover the final anomaly is 1/a, or
A times as long as the discovery of the first.

By assuming a Markov process, we have thereby also
assumed that the time increments ¢,, between discoveries are
independent random variables. Given that » - 1 anomalies
have so far been uncovered, the probability function for the
time required to find the nth follows (5), but may be solved in
terms of r, rather than 7, by moving the time origin to
T=T, and redefining 4" =4 - n, \j =\,,_,, in order that (1)
may be used to find the new P, (r). Ultimately, we then find

p, () =2X, _expl-A ¢t ] (12)
Because of independence, the probability density for observing
the values ¢,,1,, -, t, is merely the product of the corre-

sponding densities (12), or

Pt -t )= X Dexp [- gty 4ot A 1)]

(13)

Equating the derivatives of (12) with respect to o and A to
zero produces the maximum likelihood estimators @ and A.
These satisfy

n—1 1 ko1
Anl 2 7% T .
k=0
24
k=1
n—1 |
~ A-K
a=— (14)
n
tk
k=1

The solutions for 4 at several given values of # are displayed in
Fig. 4 as a function of computations based on observed values
ti. Use of this A and the observed data yields @. These
estimators were previously evaluated by Jelinski and Moranda
(Ref. 6).

Note from the curves that when 4 >> n there is very little
precision in estimating A; small variations in the computed
ratio yield very large uncertainty regions in A. Thus, the
predictors @ and A are not very accurate unless 4 is fairly large
and » is appreciable to 4.
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Wolverton and Schick (Ref. 3) report the amazing fidelity
with which these estimators predicted failures in an actual
application. After n =26 anomalles had been discovered, they
computed via (14) the estimates A =31, &= 0.007/day. They
thus estimated that there were 5 errors remaming and that the
time to discover the next would be about 1/5@ =24 days.
They record the fact that 5 errors were then found in later
testmg and that, after these, the estimates became A=316
and @ = 0.006/day. They concluded with the projection that
another error may yet remain in the system, but, if so, it
would probably require 1/0.006 = 167 days at the same level
of effort to detect. They do not record, however, whether this
error was ever actually found or not.

lil. Repair-Only Model

Before going into a concurrent find-and-fix model, let us
first address the repair-process statistics for a simplified situa-
tion in which the number of anomalies discovered is fixed.
That is, we presume that there are n initially known anomalies.
The rate at which anomalies are repaired is presumed to be
constant and independent of the number yet open, as long as
there are anomalies left to work on; more precisely, we assume
that a transition from state £, _, (ie., m - | have been
repaired) at time ¢ - Ar to state £, (i.e., m repaired) at time ¢
will take place with probability uAt for some appropriately
chosen constant u, so long as m < n. Feller (Ref. 1) gives the
governing equation for the state probabilities as a function of
time:

Pr’n (1) = -wP (D+uP | () form=0,--n-1
P () =wpP,_ (1) (15)
The solution of these is
m —ut
P ()= (u) ¢ /m! form=0,---,n-1
P () = 2 k! (16)
k=n

The equation for the probability (density) that the nth
anomaly will be repaired at time ¢ is similar to (5):

P (1) = WP, () (7
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The mean time Tm to repair m anomalies and the variance
about this value are straightforwardly found by integration
similar to (6), yielding

Tm = mlu
var (T, ) = m/u?
var (T,)
—— = 1/m (18)
T, )

This model thus predicts that all » of the known anomalies
will be repaired uniformly in time with growing absolute, but
decreasing relative, uncertainty. Each anomaly requires an
average time 1/u to repair, with variance 1/u2.

We may argue that this model has validity for a certain span
of time. Whenever the initial find-rate ()\0 in Section II)
exceeds u, the constant fix-rate, this span of time extends
from time zero until such time as there is a significant likeli-
hood that all anomalies so far discovered will have been
cleared. That is, as long as there are anomalies to work on, the
rate remains unaffected by their number.

A. Estimation of the u Parameter

The 1 parameter is, of course, generally unknown a priori,
and therefore must be estimated to be of practical utility. We
expect, subject to the assumptions above, that the times 7,

between repairs will take the cumulative form uTm =m. Hav-
ing measured
m
Z I, form=0,- - M
k=1
we may evaluate parameters 4 and b for the line f’m =m/i+b
with least mean-square error from the observed values:
6 n
~—1 - + _ 2
SR CEN TR ‘/—; AR
j=
(19)

1 m . |
b= (m+1)(m+2) ; (m+1-j)(m+2-3))t,



These estimators are unbiased (i.e., £(b) = E(1/2) = 0) and the
variation in 1/{ is reflected by

var (uff) = (6/5)"C XA 6mr4 o
m(m+1)(m+2)>2

6
S for large m

B. Zero-Defects Estimation

The condition in which all known anomalies have been
fixed is known as “zero defects.” Its more precise characteriza-
tion when discovery and repair are concurrent will be
addressed a little later; for the moment, however, we may
estimate when the first zero-defects condition will occur, on
the average, using the models of this and the preceding sec-
tions. It will occur for n <A when the repair time for n
anomalies equals the discovery time for these anomalies plus
the extra time needed to fix the last-discovered anomaly, so
long as this extra time is not long enough to discover the next
anomaly. This situation is described by

4 & 1 _ A A
(n—l)g;oA—k—p<A~n zn

Estimated values for @, /’1\, and U thus provide a means for
predicting the first zero-defects time. The prediction is perhaps
most easily determined graphically, as indicated in Fig. 5. On
reaching zero defects, there remain 4 - n anomalies yet to be
found. The ratio »2 (A-n)A =1-n/A, ie., the fraction of
the anomalies undiscovered at the time of zero defects, is a
function of the initial find-fix-rate ratio )\O/u=A afu, gov-
erned by (21). The behavior of r vs Ao /u is shown in Fig. 6.

IV. Concurrent Discovery and Repair

This section formulates the equations which govern dis-
covery and concurrent repair of anomalies; however, closed-
form solutions for such things as the average number of open
anomalies at any time, the average time to a zero-defect
condition, etc., are not yet known. The equations which
describe the probability Pn,m (?) that n of A anomalies have
been discovered by time f, and m have been fixed, are a
generalization of (1) and (15):

Poo = NPoo

Pr,:,o = *()‘0+“'M)Pn,o+ [Ny -aln- 1)JPn—l,o
forn>0

P"I'm = -\, tu- O‘n)Pn,m + A, - aln- 1)]Pn—l,m
+;LPn’m_1 for0<m<n<A4

Pr;,n =-(,- am) P +uP | forn>0 22)

Of course, these equations can be solved recursively as, for
example,

-t
= 0
Po,o (t) = e

-t
Plo@=2ge O [l-eju-o I
and so on.

By extending the generating functions described by (2) to
accommodate the present case,

n

E Pn'm (H)x"y™

m=0

A

A
® (x,p,0) = Z
n=0

1l

A
Aleyd) = 30 P (DX"Y" (24)
n=0

Then the system displayed in (22) can be written in the partial
differential equation form

ZT(I) =a{x-1) [Ad)—xgg):’ tu(y- 1)(d-A4)

(25)

As may be noted, the case with y =1 is identical to Eq. (3),
since

n
Pn = Z Pn,m

m=0

However, a direct solution to (25) has not been forthcoming
since A is unknown until @ is found and vice versa. Thus,
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further work is needed to solve or approximate the statistics of
this more general case.

V. Effects of Variation in Effort

The models so far described have assumed that constant
levels of effort were being applied to finding and fixing of
anomalies. This assumption is tantamount to equating time
and expended effort in the equations previously derived. In
actuality, the effort profile may be variable for a number of
reasons, among which are manpower phasing, availability of
computer resources, and availability of software resources.

It is typical that effort during the early testing is at a rather
lower level than later on, because “things are getting up to
speed.” Effort is being put into planning, coordination, and
resource acquisition rather than actual testing. Toward the
end, effort may also drop again, to the level supported by
sustaining personnel. This phenomenon is illustrated in Fig. 7.
In this figure, one person is applied for 7 days, 7 for 25, 4 for
22, and 2 for 30 days.

These efforts tend to distort the anomaly vs time curves
shown previously. However, we may compensate for these by
replacing the time variable ¢ in previous calculations by the
integral of the work-level profile, fw(¢) d¢. An illustration of
this principle appears in Fig. 8.

Conversely, one may compensate in reverse; that is, the
anomaly vs effort behavior may be plotted and analyzed using
the previous estimators, then translated via the projected
work-level profile to produce estimates of anomaly status at
future dates.

VI. Cascaded Testing

Even when work profile effects are factored in, it is fre-
quently the case that the discovery of anomalies takes place in
varying environments for supposed economic reasons. Certain
anomalies may not be discoverable in one environment, but
perhaps in another, due to the differing software or hardware
configurations.

For example, if a set of real-time programs are firsi tested
outside the real-time environment, those anomalies which are
due to the real-time interaction among programs are perhaps
undiscoverable until the programs are integrated into their true
operational environment.

In such situations, only a portion 4 of the tota] anomalies

will be found during the first testing, no matter how long
testing goes on. If the second stage takes place in the opera-
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tional environment, then 4 - n become discoverable during
this stage (n <4, being the number discovered in stage 1).
Typical projects generally find only about half of the total
anomalies in this first state.

This phenomenon is illustrated in Fig. 9, assuming the same
constant level of effort &, 100 total anomalies, and 4, = 50
findable during the first stage. Switching to the operational
environment takes place at 45 errors, or 90 percent of those
that can be found. As may be seen, multistage testing may
take a significantly longer time (31 percent in the illustrated
case) to find all anomalies.

Moreover, the test time requirements on usage of the opera-
tional facility are about the same (52 vs 46 days) in either
case; that is, there is probably no significant savings in the use
of the more expensive facility! Therefore, unless there are
other overriding constraints which mandate multistage testing,
this form of “bottom-up” anomaly discovery plan cannot be
cost effective.

VIl. Conclusions

Although a general solution to the discovery and concur-
rent repair model may not be known at this time, solutions to
the simpler underlying component models are given, valid
when discovery and repair processes are non-interacting. These
solutions permit the estimation of model parameters and the
subsequent forecast of project completion dates. The accuracy
of forecasting is also obtainable, to evaluate the need for
contingency planning.

Inasmuch as the models studied here probably represent a
fairly optimistic view of anomaly data, the results of this
article tend to point out those things which cannot be gleaned
from such data, perhaps more than revealing what things can
accurately be deduced.

For example, the curves in Fig. 4 allow predictions of the
total number of anomalies to be made. The fundamental truth
contained in that figure is that an accurate estimation of the
total number of anomalies requires testing a system which has
many anomalies to begin with, of which a significant fraction
must already have been found. Figure 2 echoes this fact.

Having estimated that a certain significant fraction, say, 90
percent, of the anomalies have already been found, Fig.3
permits one to estimate how much time is yet required to find
the remaining 10 percent. If there are 1000 estimated in all,
the remaining 100 will require more than twice as much time
to uncover as has already been spent! But the lesson here is
that, although disproportionate, that time requirement is not
unnatural or unreasonable.



Figure 1 shows that once 80 to 85 percent of the anomalies
have been found, the expected discovery rate is subject to
wider and wider variations; if schedules are being set or fore-
casts being made requiring contingencies or reapportionment
of resources, such variances need to be taken into account in
order to avert disasters. The lesson from this figure is that it is
not realistic to believe the last 15 percent of anomalies will
even progress as smoothly as the first 85 percent, in addition
to requiring a disproportionate time.

This article has shown how the effects of a variable work
profile can be used to influence the rate of discovery or repair.

Also, it has shown that cascaded-stage testing is probably more
expensive than single-stage end-to-end tests in the final opera-
tional environment.

Figure 10 is an actual anomaly history; unfortunately, the
work profile is not available, so a detailed comparison with the
theory presented here is not possible. However, the reader will
note that all of the predicted elements are present: the effects
of low-level effort during the start of testing, the decreasing
rate of anomaly discovery in the sub-operational testing prior
to transfer, the increased rate thereafter, and the ultimate
leveling off as the testing continued.
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initial discovery rate of A, = 2 anomalies per man-day
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